Analysis of esophageal cancer cell lines exposed to X-ray based on radiosensitivity influence by tumor necrosis factor-α

⁴ Yizhi Ge, Xiang Gu and Buhai Wang*

5 Department of Oncology of Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China

6 Received 03 October 2015

7 Revised 13 December 2015

8 Accepted 03 January 2016

Abstract. Assess the effects of tumor necrosis factor-a (TNF-a) in enhancing the radiosensitivity of esophageal cancer cell 9 line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF- α treatment. MTT assay was 10 used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing 11 effects of TNF- α were detected by cell colony formation assay. Western blotting was applied to observe the expression of 12 NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the 13 strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF- κ B protein was stated 14 between only rhTNF- α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-15 3 protein content expression just works opposite. Three kinds of cells in the NF- κ B protein were similar without rhTNF- α . 16 Then SEG1 NF- κ B protein content was reduced more than other two kinds. We concluded that the cells treated with TNF- α 17 showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray 18 exposure. TNF- α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former. 19

20 Keywords: Tumor necrosis factor-α, radiation-sensitizing agents, rhTNF-α, esophageal cancer

20 **1. Introduction**

Esophageal cancer is the 8th most common cancer in the world, which accounts for more than 80% of 21 total cases and deaths in the developing countries [1]. According to the National Cancer Institute, in the 22 United States, there will be approximately 18000 new cases and 16000 deaths in 2013 [2]. Esophageal 23 cancer is considered as a serious malignancy with respect to prognosis and mortality rate. Squamous cell 24 carcinoma (SCC) is the most common type of esophageal cancer in China; meanwhile, adenocarcinoma 25 has become the leading cause of esophageal cancer in the western countries [3]. Locally advanced or 26 metastasis have already been confirmed when patients were diagnosed. Surgery, chemotherapy and 27 radiotherapy are the standards for the treatment, but patients do not get more effects from them and have 28 a low sensitivity, thus the usage of appropriate radiation-sensitizing agent is particularly important. 29 Tumor necrosis factor- α (TNF- α) is a kind of cytokines, which can modulate many inflammation and 30

^{*}Corresponding author: Buhai Wang, Department of Oncology of Northern Jiangsu People's Hospital, Yangzhou 225000, Jiangsu, China. Tel.: +86 13813194298; Fax: +86 514 87373735; E-mail: wbhself@sina.com.

Y. Ge et al. / Analysis of esophageal cancer cell lines exposed

immune response and is so far recognized as the strongest cytokines with antitumor activity. TNF- α can 31 make cancerous tissue necrosis, which is closely related to the occurrence and development of various 32 diseases [4]. The mechanism may have correlation with caspase-3, NF-κB and MAPK, etc [5]. Many 33 researches have proved that TNF- α plays a role in other therapy or combination therapy methods besides 34 the function in inhibition of tumor cells and cytotoxicity [6–13]. Radiotherapy is a important method 35 to treat malignant tumor, though limited in efficacy because of the low sensitivity to radiotherapy. So 36 radiosensitivity is gradually becoming the hot spot of attention. Veeraraghavan [14] found TNF- α can 37 be used as a Radiation-sensitizing agent to reinforce the sensitivity of radiotherapy of tumor cells, 38 which is related to the NF-kB signal path. NF-kB is a kind of transcription factors, playing a vital role 30 in modulating various genes involved in cell viability and immune responses as well as inflammatory. 40 It is composed of five distinct but structurally related subunits.p65 is the active part during these five 41 subunits and plays the central role. In unstimulated cells, NF-kB is sequestered in the cytoplasm by the 42 inhibitor of NF-kB family (IkB) via their ankyrin repeat domains. Upon stimulation, such as radiation 43 or antitumor agents, the I κ B kinase (IKK) complex is activated and subsequent I κ B degraded by the 44 ubiquitin-proteasome pathway. Then, NF-KB releases and translocates into the nucleus to stimulate 45 the expression of its target genes via combining with corresponding DNA binding sites [15-18]. Lots 46 researches confirmed that NF-KB is connected with radiation resistance and anti-apoptosis effect of 47 cells [19–20]. Through the regulation of genes, NF-KB regulates immune and inflammatory response. 48 It is also involved in cell differentiation and apoptosis [21], playing a significant role in cell radiation 49 resistance. Studies show that inhibitors of NF-κB would strengthen the radiosensitivity of cervical 50 cancer, lung cancer, etc. It can be used as a relate protein connected to radiosensitivity [22, 23]. 51

Most of the available reports demonstrated the effect of $TNF-\alpha$ in combination with radiation in lung 52 cancer, laryngeal cancer, tongue carcinoma, sarcoma and lymphoma cancer cells and the mechanism 53 of its enhanced antitumor activity in recent years [6-13], however, the effectiveness has not been 54 reported in esophagus cancer in China and abroad. This study is to investigate the radiosensitivity 55 efficacy of TNF- α in combination with irradiation against human esophagus cancer in vitro, TE13 56 (poorly differentiated squamous cell carcinomas), KYSE140 (moderately differentiated squamous 57 cell carcinomas) and SEG1 (adenocarcinoma). 58 えい

2. Materials and methods 59

2.1. Cell culture and irradiation 60

Human esophagus Cancer cells TE13, KYSE-140 and SEG-1 were obtained from Shanghai valley 61 research industrial (http://guyan201301.cn.china.cn). These cell lines were cultured in 60-mm culture 62 dish (Corning, USA) and maintained in RPMI-1640 medium supplemented with 100 U/ml of penicillin, 63 100 ug/ml of streptomycin, and 10% fetal bovine serum. In all experiments, reagents were purchased 64 from Gibco. Cells were incubated at 37°C in a humidified atmosphere containing 5% CO2. TNF- α 65 (0.5 million IU/bottle) was purchased from Shanghai weike biopharmaceutical Co. Ltd. 66

After reaching confluence, they were subcultured using $1 \times$ sterile phosphatebuffered saline (PBS) 67 and $1 \times$ trypsin. For experimental stimulation, cells were cultured in 96-well plates at a density of 68 5×10^4 cells/well. Reagents for cell culture were obtained from Gibco and materials from Thermo 69 Fisher Scientific (Shanghai, China). 70

2.2. Radiation treatment 71

Esophageal cells during exponential growth phase were treated with X irradiation with a dose rate 72 of 300 MU/min (VARIAN 23EX.USA). Appropriate output dose was delivered by 6 MV X-ray under 73

radiation field of 40×40 and 100 mm of source skin distance. Before irradiation, the medium was replaced with fresh one which contains TNF- α with different concentration. The dishes were then returned to the incubator for further culture, and the cells were harvested at indicated time.

77 2.3. MTT assay

Three cells lines were seeded on 96-well plates (Corning Costar) at 5×10^4 cells/well in RPMI-78 1640 medium containing 10% FBS. Twenty-four hours later, the cells were treated with its different 79 concentrations of TNF- α for another 24 h. Viable cells were counted by the MTT assay. Briefly, cells 80 were incubated with 50 µl of 0.2% MTT for 4 h. Following MTT incubation, cells were lysed in 150 µl 81 of DMSO and the absorbance was read at 490 nm with a automatic microplate reader. The experiments 82 were run in triplicate. The cells during exponential growth phase were divided into four groups: control, 83 TNF- α , radiation and TNF- α in combination with radiation group. The cells were harvested and treated 84 with MTT assay after 12, 24, 36, 48, 72 h. 85

2.4. Annexin-V/propidium iodide staining

⁸⁷ Cells were washed twice with cold PBS and resuspended in 500 μ l binding buffer at a concentration ⁸⁸ of 5 × 10⁵/ml.Then, 5 μ l Annexin V-FITC (keyGEN BioTECH) and 5 μ l Presidium iodide were added ⁸⁹ to these cells. After incubation at room temperature for 10 min, each sample was kept on ice before ⁹⁰ counting the stained cells by flow cytometry. The mean fluorescence intensity of Annexin V-FITC/PI ⁹¹ was determined by flow cytometry using the excitation wavelengths is 488 nm, emission wavelengths ⁹² is 530 nm(BD Calibur, USA). Then, the apoptosis index (AI) was calculated as the mean fluorescence ⁹³ intensity.

94 2.5. Cell colony formation assay

The radiosensitizing effects of TNF- α combined with X-ray were detected by cell colony formation 95 assay. The sensitization concentration of TNF- α was set according to the preliminary test that can 96 inhibit 50% cell growth. Cultured esophageal cancer cells were randomly assigned to three groups: 97 control, radiation alone, TNF- α and radiation combined groups, each group was seeded on 60-mm 98 culture dishes apart, following which the cells were subjected to 0, 2, 4, 6, and 8 Gy X-ray irradiation. 99 After 3 hours, the medium was exchanged for fresh medium, and cells were maintained to grow for 100 two weeks to allow for the formation of colonies and then stained with crystal violet (Sigma Chemical 101 Co). The number of colonies with more than 50 cells was counted using the microscope. Experiments 102 were repeated at least three times, and the data were expressed as the mean \pm SEM. 103

104 2.6. Western blot analysis

Untreated, TNF- α and/or radiation treated TE 13,KYSE 140 and SEG 1 cells were used for the 105 detection of caspase 3 and p65 NF-kB expression. After received their respective treatment, the cells 106 were harvested and the whole cell lysates from control and treated cells were prepared with RIPA 107 buffer (Thermo Fisher Scientific). The samples were boiled and quantified with Bradford (Nanjing 108 Jiancheng Bioengineering Institute). Cell lysates containing 50 µg protein/sample and equal amounts 109 of proteins were separated on 12% SDS- polyacrylamide gel electrophoresis and subsequent transferred 110 to a PVDF membrane. Membranes were blocked in TBST containing 0.1% Tween-20, then were treated 111 with specific anti-NF-KB mouse monoclonal antibody (1:200) or caspase-3 (1:400) at 4°C overnight, 112 and then incubated with the horseradish peroxidase-conjugated secondary antibody (1:5000) for 2 h. 113 The bands were detected using ECL chemiluminescent detection reagents (BI). Anti-actin (1:400) 114

monoclonal antibody was used for normalization of western blot analysis. All the antibodies were
 gotten from Santa Cruz Biotechnology.

117 2.7. Statistics methods

All data are expressed as mean \pm SD. One-sample *t*-test was used to statistically analyze the significance in the expression ratios of irradiated versus controlled or TNF- α samples. A p value less than 0.05 were considered significant. One-hit multitarget model was adopted. Radiosensitization ratio (SER) was defined as D₀ of the radiation group/D₀ of the sensitization Group.

122 **3. Results**

$_{123}$ 3.1. Effect of TNF- α on tumor growth inhibition

The growth inhibitory effect of TNF- α in combination with radiation on three kind's esophageal 124 cancers was analyzed by the MTT assay. Just as showed in Fig. 1, the trend of the rate of TE 13 125 cell line is gradually raising following the increase concentration of TNF- α , which was performed by 126 our pre-experiment. The same phenomena were observed between KYSE 140 and SEG 1 cell lines. 127 Then we can calculate the concentration of suppressed 50% cell growth through the usage of SPSS 128 software. The concentrations of TNF- α that suppressed 50% cell growth (IC50) of TE 13, KYSE 129 140 and SEG 1 are 400IU/m, 400IU/ml, and 1200IU/ml respectively. As shown in Fig. 2, TNF- α 130 have no obvious inhibitory effect, the same as irradiation under 200cGy. After added TNF- α with the 131 concentration of its IC50, TE-13 cells exhibited an increased suppression rate in a time-dependent 132 manner. Similar phenomenon was observed after TNF- α treatment in KYSE 140 and SEG 1, the 133 differences are statistically significant (P < 0.05). 134

$_{135}$ 3.2. Effect of TNF- α on cell apoptosis

To determine whether the radiosensitivity of TNF- α among these cells was correlated with the differences of apoptosis induction, cells were exposed to radiation (2 Gy) with or without TNF- α , and then cell apoptosis was detected by flow cytometry analysis as performed in Fig. 3 of TE 13. The apoptosis induction effects of TNF- α or radiation alone was moderately upregulated, and the apoptosis induction rates seemed to have undergone a synergistic increase in TE-13 cells after the combination

Fig. 1. Apoptosis rate of TE 13 cell line under different concentration of TNF- α under the 2Gy radiation. As it is showed, we can state that the apoptosis rate of TE 13 is increasing with the larger condensation of TNF- α . But the tread became smooth from 400 IU/ml. C" = control group, "T" = TNF- α treated only group, "R" = radiation only group and "T+R" = TNF- α in combination with radiation group.

4

grou	р	apoptosis rate(%)			
		TE 13	KYSE 140	SEG	1
conti	rol	0.02 ± 0.01 1.40 ± 0.15	0.07 ± 0.29 5.80 ± 0.50	0.42 ± 0.05 3.33 ± 0.45	
TNF	-α only				
X-ray only		4.01 ± 0.44	6.78 ± 0.91	4.73 ± 0.53	
TNF-α+ X-ray		7.94 ± 0.31	13.4 ± 1.32	12.18 ± 0.41	
		Tabl	le 2	L'C)
		Cell dose effect cur	ve parameter table		
	group	D_0	Ν	D_q	SF2
13	radiation	3.06 ± 0.06	4.34 ± 0.19	4.49 ± 0.23	0.96 ± 0.14
	combination	2.61 ± 0.27	3.62 ± 0.06	3.36 ± 0.18	0.90 ± 0.15
E 140	radiation	2.52 ± 0.18	3.24 ± 0.17	2.96 ± 0.19	0.92 ± 0.15
	combination	2.04 ± 0.19	4.15 ± 0.27	2.90 ± 0.35	0.86 ± 0.07
1	radiation	3.41 ± 0.16	4.27±0.11	4.95 ± 0.25	0.97 ± 0.18
	combination	2.84 ± 0.25	3.7 ± 0.33	3.72 ± 0.37	0.92 ± 0.28

Table 1 Apoptosis rate of TE13_KYSE140 and SEG1

treatment as shown in Table 1. A better effect can be seen all of three cell lines. Similar results were 141 also observed in the KYSE 140 and SEG 1. 142

3.3. Colony formation assay 143

This study was fitted to the one-hit multitarget model according to the research conditions. In the 144 model, SF was calculated as follows: SF = $1 - (1 - e^{-KD})^N$. $K = 1/D_0$, $N = D_0/D_0$. D_0 represented the mean 145 lethal dose, D_q is quasi-threshold dose. D_q can stands for the cell's ability to repair after sublethal 146 damage in the former papers. Cells exert higher radiation resist with larger value of D_0 . The data 147 shows that, comparing to the control cells, TNF-α combined with irradiation groups exhibited more 148 sensitive among all three esophageal cancer cell lines. Furthermore, the parameters of radiotherapy 149 sensitization, naming D_0 , N, D_a , SF2, declined more than the irradiation-alone group. The value of 150 SERD₀ is 1.17, 1.24, and 1.20, respectively standing for TE 13, KYSE 140, and SEG 1 (Table 2). 151

This table showed the radio sensitive of three cell lines after the treatment of TNF- α combined with 152 radiation. D₀ represented the mean lethal dose, D_q is quasi-threshold dose. N and SF will be calculated 153 by D_q and D_0 . 154

3.4. Expression of caspase-3 and nuclear NF-кВ protein 155

To identify the mechanisms behind the apoptosis inducing activities of TNF- α combined with radia-156 tion treatment, the expression of caspases 3 was examined by western blotting. As shown in Fig. 2, the 157 expression of caspases 3 protein was increased in TNF- α combined with irradiation group compared 158 with the other three groups in TE 13. Contrary to caspases 3, NF-kB shows a notably declined trend. 159 The same result was observed in KYSE 140 and SEG 1 cell lines as illuminated in Figs. 3 and 4. 160 We observed no sensible changes in NF- κ B and caspase 3 expressions between control and TNF- α 161 only group in all kinds of cell lines. The expressions are different among these esophageal cancer cell 162

Fig. 2. Inhibition rate of TE 13 cell. This graph shows the inhibition rate of TE13, poorly differentiated squamous cell carcinomas of esophagus cancer. "C" = control group, "T" = TNF- α treated only group, "R" = radiation only group and "T+R" = TNF- α in combination with radiation group.

Fig. 3. Cell apoptosis of TE 13 cell line tested by flow cytometry analysis. (a) apoptosis rate of control group; (b) TE 13 cell lines treated only by TNF- α ; (c) treatment only by radiation; and (d) the combined treatment of TNF- α and radiation on TE 13.

lines. SEG 1 cells showed relatively strong expression of NF- κ B compared to the others, but have a weaker content than other two cell lines after the combined treatment (Fig. 4). However, the increase of radiosensitivity induced by TNF- α in all three cells was observed in esophageal cancer (Fig. 4).

166 **4. Discussion**

¹⁶⁷ Many scholars used the TNF- α as radiotherapy sensitization agent in basic research and proved that it can induce tumor cell apoptosis, and enhance its sensitivity to radiotherapy through various

Fig. 4. Showed the expression of corresponding proteins before or after special treatment in three kinds of esophagus cancer. (a) The two cases of proteins' expressed by TE 13 cell lines; (b) KYSE 140, and (c) SEG 1. C: control; T: TNF- α treatment only; R: X-ray treatment only; T+R: TNF- α combined with radiation treatment. (d) and (e) The protein expression of NF- κ B in all three cell lines before an after the combined treatment. T1 stands for TE 13 control, T4 represents TE 13 combined treatment group, K1 is on behalf of KYSE 140 control, K4 expresses KYSE 140 combined treatment unit, S1 denote SEG 1 control and S4 signifies SEG 1 combined treatment form.

channels. The NF-κB protein content is related to radiation resistance of cancer cells. Caspases, which
belongs to a family of cysteine proteases, are the key proteins that modulate the apoptotic response.
These enzymes occur in a latent form in the cytoplasm and are activated late in the apoptotic process.
Caspase 3 is a vital mediator of apoptosis that is activated by an initiator caspase.

This study indicated that apoptosis-related protein, caspase 3, increased compared to Separate TNF- α 173 or X-ray treatment group, which declared the application of TNF- α can induce the apoptosis of human 174 esophageal cancer cells, TE13, KYSE 140, and SEG 1 make more apparent trend in the expression 175 of caspase 3. The NF- κ B protein involved in radiation sensitivity expression is also different among 176 four discriminatory treatment groups. Its density is significantly lower than the control or TNF- α or 177 X-ray treatment group, suggesting that TNF- α has a significant function on radiotherapy sensitization 178 in poorly differentiated esophageal cancer cell, TE13. Meanwhile, the expression of caspase 3 protein 179 increases correspondingly. The study of moderately differentiated, KYSE 140 and adenocarcinoma, 180 SEG 1, drew the same conclusion with TE 13: the NF- κ B protein content was significantly reduced, 181 contrary to caspase 3. Then, we found that NF-κB protein content is higher in adenocarcinoma than 182 squamous cell carcinoma(SCC) before radiation via comparing three cell lines with the treatment of 183 TNF- α and X-ray, which explained why SEG 1 has a higher radiation resistance. The expression of 184 NF- κ B protein notably decreased and was lower than the other two after adding TNF- α (1200IU/ml), 185 evaluating that the effects of radiation sensitization is superior than the others. This result is in accord 186 with clone formation assay. 187

Fig. 5. Influence of expression of protein Caspase 3 and NF-KB induced by the combined application of TNF- α and X-ray in three esophageal cancer cell. (a) NF-KB proteins' expressed by three esophageal cell lines; (b) the proteins of caspase-3 among three cell lines; and (c) the contents of NF-KB protein in all cell lines. "C": control group; "T" : TNF- α treatment only group; "R": X-ray treatment only group; "T+R": TNF- α combined with radiation treatment.

5. Conclusion

¹⁸⁹ We conclude that the therapy of TNF- α combined with X-ray can increase the radiosensitivity of ¹⁸⁰ esophageal carcinoma, especially in adenocarcinoma, SEG 1. Not only can TNF- α be used in lung ¹⁹¹ cancer, throat cancer, tongue carcinoma, sarcoma and lymphoma [3–8], but it can also enhance the ¹⁹² sensitivity to radiation in esophageal carcinoma, increasing caspase-3 protein expression level. Given ¹⁹³ our experimental data, these findings may be useful with regards to potential applications of TNF- α ¹⁹⁴ in esophageal carcinoma patients undergoing radiotherapy.

195 References

- L. Herszényi and Z. Tulassay, Epidemiology of gastrointestinal and liver tumors, *Eur Rev Med Pharmacol Sci* (2010),
 249–258.
- [2] Surveillance, Epidemiology, and End Results ProgramTurning. SEER Stat Fact Sheets: Esophageal Cancer. Retrieved
 November 9, 2013.
- 200 [3] A. Absi, D.J. Adelstein and T. Rice, Esophageal Cancer. 2013.
- [4] Y.H. Park, M.S. Jeong, S.B. Jang et al., Death domain complex of the TNFR-1, TRADD, and RIP1 proteins for death-inducing signaling[J], *Biochem Biophys Res Commun* (2014), 1155–1161.
- [5] Y.H. Zhang, H.Q. Yan, F. Wang et al., TIPE2 inhibits TNF- α -induced hepatocellular carcinoma cell metastasis via Erk1/2 downregulation and NF- κ B activation[J], *Int J Oncol* (2015), 254–264.

- 9
- [6] D.C. de Oliveira, A.A. Hastreiter and A.S. Mello, The effects of protein malnutrition on the TNF-RI and NF- κ B expression via the TNF- α signaling pathway[J], *Cytokine* (2014), 218–225.
- [7] J. Shaw, B. Shay, J. Jiang et al., Metabolism studies of a small-molecule tumor necrosis factor-alpha (TNF-α) inhibitor,
 UTL-5b (GBL-5b)[J], *Eur J Drug Metab Pharmacokinet* (2012), 83–89.
- [8] H.G. Wang, H.F. Liu, C.Z. Li et al., Combined Ad-rhTNF-αGene therapy and radiotherapy study in a c6/
 subcutaneous malignant glioma model of wistar rat[J], *Chinese Journal of Neuro-Oncology* (2006), 118–124.
- [9] S.M. Zhu, S.M. Song, F. Wu et al., Experimental study on effect of TNF-Aon reversing radioresistance in laryngeal squamous carcinoma cell [J], *Chongging Medical Journal* (2010), 133–136.
- [10] X. Hui, C.H. Yu, Y.M. Zhang et al., Tumor necrosis factor-α enhances radiosensitivity of A549 cells [J], J South Med
 Univ (2012). 565–568.
- [11] Y. Meng, H.J. Mauceri, N.N. Khodarev et al., Ad.Egr-TNF and local ionizing radiation suppress metastases by interferon-beta-dependent activation of antigen-specific CD8+ T cells[J], *Mol Ther* (2010), 912–920.
- [12] T. Bölling, A. Kolkmeyer, B. Greve et al., Heterogeneity of radiation- and TNF-alpha-induced programmed cell death in carcinoma, sarcoma and lymphoma cell lines[J], *Anticancer Res* (2010), 2857–2861.
- [13] M. Jung, A. Dimtchev, A. Velena et al., Combining radiation therapy with interstitial radiation-inducible TNF- α expression for locoregional cancer treatment[J], *Cancer Gene Ther* (2011), 189–195.
- [14] J. Veeraraghavan, M. Natarajan, S. Aravindan et al., Radiation-triggered tumor necrosis factor (TNF) alpha-NF-kappaB cross-signaling favors survival advantage in human neuroblastoma cells[J], *Biol Chem* (2011), 588–600.
- [15] Y. Huang, Y. Zang, L. Zhou et al., The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated
 sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy[J], *Neurochem Int* (2014), 112–119.
- [16] Y. Zhu, Y. Liu and Y. Qian,. Research on the efficacy of Celastrus Orbiculatus in suppressing TGF- β 1-induced epithelial-mesenchymal transition by inhibiting HSP27 and TNF- α -induced NF- κ B/Snail signaling pathway in human gastric adeno carcinoma[J], *BMC Complement Altern Med* (2014), 433–435.
- [17] Y. Wu and B.P. Zhou, TNF-a/NF-kB/Snail pathway in cancer cell migration and invasion[J], *British Journal of Cancer* (2010), 639–644.
- [18] D. Bhatt and S. Ghosh, Regulation of the NF-κB-Mediated Transcription of Inflammatory Genes, *Front Immunol* (2014), 71.
- [19] K.M. Ahmed and J.J. Li, NF-kappa B-mediated adaptive resistance to ionizing radiation[J], *Free Radic Biol Med* (2008), 1-13.
- [20] M.S. Brassesco, G.M. Roberto, A.G. Morales et al., Inhibition of NF-κB by Dehydroxymethylepoxyquinomicin Suppresses Invasion and Synergistically Potentiates Temozolomide and γ-Radiation Cytotoxicity in Glioblastoma Cells[J], Chemother Res Pract (2013), 31–34.
- [21] K. Harada, T. Ferdous, H. Kobayashi et at., Paclitaxel in combination with cetuximab exerts antitumor effect by
 suppressing NF-κB activity in human oral squamous cell carcinoma cell lines[J], *Int J Oncol* (2014), 39–45.
- [22] S. Xia, Y. Zhao, S. Yu et al., Activated PI3K/Akt/COX-2 Pathway Induces Resistance to Radiation in Human Cervical
 Cancer HeLa Cells[J], *Cancer Biother Radio* (2010), 317–323.
- [23] Q. Luo, H. Lin, X. Ye et al., Trim44 facilitates the migration and invasion of human lung cancer cells via the NF-κB
 signaling pathway[J], *Int J Clin Oncol* (2014), 265–268.

S COL